Part Datasheet Search > TI > AM4379 Datasheet PDF
AM4379 Datasheet PDF
ADatasheet has not yet included the datasheet for AM4379
If necessary, please send a supplementary document request to the administrator
AM4379 Datasheet PDF (260 Pages)
View Datasheet
Click page to view the detail
AM4379 Environmental
AM4379 Function Overview
The TI AM437x high-performance processors are based on the ARM Cortex-A9 core.
●The processors are enhanced with 3D graphics acceleration for rich graphical user interfaces, as well as a coprocessor for deterministic, real-time processing including industrial communication protocols, such as EtherCAT, PROFIBUS, EnDat, and others. The devices support high-level operating systems (HLOS). Linux® is available free of charge from TI. Other HLOSs are available from TIs Design Network and ecosystem partners.
●These devices offer an upgrade to systems based on lower performance ARM cores and provide updated peripherals, including memory options such as QSPI-NOR and LPDDR2.
●The processors contain the subsystems shown in Figure 1-1, and a brief description of each follows.
●The processor subsystem is based on the ARM Cortex-A9 core, and the PowerVR SGX™ graphics accelerator subsystem provides 3D graphics acceleration to support display and advanced user interfaces.
●The programmable real-time unit subsystem and industrial communication subsystem (PRU-ICSS) is separate from the ARM core and allows independent operation and clocking for greater efficiency and flexibility. The PRU-ICSS enables additional peripheral interfaces and real-time protocols such as EtherCAT, PROFINET, EtherNet/IP, PROFIBUS, Ethernet Powerlink, Sercos, EnDat, and others. The PRU-ICSS enables EnDat and another industrial communication protocol in parallel. Additionally, the programmable nature of the PRU-ICSS, along with their access to pins, events and all system-on-chip (SoC) resources, provides flexibility in implementing fast real-time responses, specialized data handling operations, custom peripheral interfaces, and in off-loading tasks from the other processor cores of the SoC.
●High-performance interconnects provide high-bandwidth data transfers for multiple initiators to the internal and external memory controllers and to on-chip peripherals. The device also offers a comprehensive clock-management scheme.
●One on-chip analog to digital converter (ADC0) can couple with the display subsystem to provide an integrated touch-screen solution. The other ADC (ADC1) can combine with the pulse width module to create a closed-loop motor control solution.
●The RTC provides a clock reference on a separate power domain. The clock reference enables a battery-backed clock reference.
●The camera interface offers configuration for a single- or dual-camera parallel port.
●Cryptographic acceleration is available in every AM437x device. Secure boot is available only on AM437xHS devices for anticloning and illegal software update protection. For more information about secure boot and HS devices, contact your TI sales representative.
● Highlights
● Sitara™ ARM® Cortex®-A9 32-Bit RISC Processor With Processing Speed up to 1000 MHz
● NEON™ SIMD Coprocessor and Vector Floating Point (VFPv3) Coprocessor
● 32KB of Both L1 Instruction and Data Cache
● 256KB of L2 Cache or L3 RAM
● 32-Bit LPDDR2, DDR3, and DDR3L Support
● General-Purpose Memory Support (NAND, NOR, SRAM) Supporting up to 16-Bit ECC
● SGX530 Graphics Engine
● Display Subsystem
● Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU-ICSS)
● Real-Time Clock (RTC)
● Up to Two USB 2.0 High-Speed Dual-Role (Host or Device) Ports With Integrated PHY
● 10, 100, and 1000 Ethernet Switch Supporting up to Two Ports
● Serial Interfaces:
● Two Controller Area Network (CAN) Ports
● Six UARTs, Two McASPs, Five McSPIs, Three I2C Ports, One QSPI, and One HDQ or 1-Wire
● Security
● Crypto Hardware Accelerators (AES, SHA, RNG, DES, and 3DES)
● Secure Boot (Avaliable Only on AM437x High-Security [AM437xHS] Devices)
● Two 12-Bit Successive Approximation Register (SAR) ADCs
● Up to Three 32-Bit Enhanced Capture (eCAP) Modules
● Up to Three Enhanced Quadrature Encoder Pulse (eQEP) Modules
● Up to Six Enhanced High-Resolution PWM (eHRPWM) Modules
● MPU Subsystem
● ARM Cortex-A9 32-Bit RISC Microprocessor With Processing Speed up to 1000 MHz
● 32KB of Both L1 Instruction and Data Cache
● 256KB of L2 Cache (Option to Configure as L3 RAM)
● 256KB of On-Chip Boot ROM
● 64KB of On-Chip RAM
● Secure Control Module (SCM) (Avaliable Only on AM437xHS Devices)
● Emulation and Debug
● JTAG
● Embedded Trace Buffer
● Interrupt Controller
● On-Chip Memory (Shared L3 RAM)
● 256KB of General-Purpose On-Chip Memory Controller (OCMC) RAM
● Accessible to All Masters
● Supports Retention for Fast Wakeup
● Up to 512KB of Total Internal RAM (256KB of ARM Memory Configured as L3 RAM + 256KB of OCMC RAM)
● External Memory Interfaces (EMIFs)
● DDR Controllers:
● LPDDR2: 266-MHz Clock (LPDDR2-533 Data Rate)
● DDR3 and DDR3L: 400-MHz Clock (DDR-800 Data Rate)
● 32-Bit Data Bus
● 2GB of Total Addressable Space
● Supports One x32, Two x16, or Four x8 Memory Device Configurations
● General-Purpose Memory Controller (GPMC)
● Flexible 8- and 16-Bit Asynchronous Memory Interface With up to Seven Chip Selects (NAND, NOR, Muxed-NOR, and SRAM)
● Uses BCH Code to Support 4-, 8-, or 16-Bit ECC
● Uses Hamming Code to Support 1-Bit ECC
● Error Locator Module (ELM)
● Used With the GPMC to Locate Addresses of Data Errors From Syndrome Polynomials Generated Using a BCH Algorithm
● Supports 4-, 8-, and 16-Bit Per 512-Byte Block Error Location Based on BCH Algorithms
● Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU-ICSS)
● Supports Protocols such as EtherCAT®, PROFIBUS®, PROFINET®, and EtherNet/IP™, EnDat 2.2, and More
● Two Programmable Real-Time Units (PRUs) Subsystems With Two PRU Cores Each
● Each Core is a 32-Bit Load and Store RISC Processor Capable of Running at 200 MHz
● 12KB (PRU-ICSS1), 4KB (PRU-ICSS0) of Instruction RAM With Single-Error Detection (Parity)
● 8KB (PRU-ICSS1), 4KB (PRU-ICSS0) of Data RAM With Single-Error Detection (Parity)
● Single-Cycle 32-Bit Multiplier With 64-Bit Accumulator
● Enhanced GPIO Module Provides Shift-In and Shift-Out Support and Parallel Latch on External Signal
● 12KB (PRU-ICSS1 Only) of Shared RAM With Single-Error Detection (Parity)
● Three 120-Byte Register Banks Accessible by Each PRU
● Interrupt Controller Module (INTC) for Handling System Input Events
● Local Interconnect Bus for Connecting Internal and External Masters to the Resources Inside the PRU-ICSS
● Peripherals Inside the PRU-ICSS
● One UART Port With Flow Control Pins, Supports up to 12 Mbps
● One eCAP Module
● Two MII Ethernet Ports that Support Industrial Ethernet, such as EtherCAT
● One MDIO Port
● Industrial Communication is Supported by Two PRU-ICSS Subsystems
● Power, Reset, and Clock Management (PRCM) Module
● Controls the Entry and Exit of Deep-Sleep Modes
● Responsible for Sleep Sequencing, Power Domain Switch-Off Sequencing, Wake-Up Sequencing, and Power Domain Switch-On Sequencing
● Clocks
● Integrated High-Frequency Oscillator Used to Generate a Reference Clock (19.2, 24, 25, and 26 MHz) for Various System and Peripheral Clocks
● Supports Individual Clock Enable and Disable Control for Subsystems and Peripherals to Facilitate Reduced Power Consumption
● Five ADPLLs to Generate System Clocks (MPU Subsystem, DDR Interface, USB, and Peripherals [MMC and SD, UART, SPI, I2C], L3, L4, Ethernet, GFX [SGX530], and LCD Pixel Clock)
● Power
● Two Nonswitchable Power Domains (RTC and Wake-Up Logic [WAKE-UP])
● Three Switchable Power Domains (MPU Subsystem, SGX530 [GFX], Peripherals and Infrastructure [PER])
● Dynamic Voltage Frequency Scaling (DVFS)
● Real-Time Clock (RTC)
● Real-Time Date (Day, Month, Year, and Day of Week) and Time (Hours, Minutes, and Seconds) Information
● Internal 32.768-kHz Oscillator, RTC Logic, and 1.1-V Internal LDO
● Independent Power-On-Reset (RTC_PWRONRSTn) Input
● Dedicated Input Pin (RTC_WAKEUP) for External Wake Events
● Programmable Alarm Can Generate Internal Interrupts to the PRCM for Wakeup or Cortex-A9 for Event Notification
● Programmable Alarm Can Be Used With External Output (RTC_PMIC_EN) to Enable the Power-Management IC to Restore Non-RTC Power Domains
● Peripherals
● Up to Two USB 2.0 High-Speed Dual-Role (Host or Device) Ports With Integrated PHY
● Up to Two Industrial Gigabit Ethernet MACs (10, 100, and 1000 Mbps)
● Integrated Switch
● Each MAC Supports MII, RMII, and RGMII and MDIO Interfaces
● Ethernet MACs and Switch Can Operate Independent of Other Functions
● IEEE 1588v2 Precision Time Protocol (PTP)
● Up to Two CAN Ports
● Supports CAN Version 2 Parts A and B
● Up to Two Multichannel Audio Serial Ports (McASPs)
● Transmit and Receive Clocks up to 50 MHz
● Up to Four Serial Data Pins Per McASP Port With Independent TX and RX Clocks
● Supports Time Division Multiplexing (TDM), Inter-IC Sound (I2S), and Similar Formats
● Supports Digital Audio Interface Transmission (SPDIF, IEC60958-1, and AES-3 Formats)
● FIFO Buffers for Transmit and Receive (256 Bytes)
● Up to Six UARTs
● All UARTs Support IrDA and CIR Modes
● All UARTs Support RTS and CTS Flow Control
● UART1 Supports Full Modem Control
● Up to Five Master and Slave McSPIs
● McSPI0–McSPI2 Support up to Four Chip Selects
● McSPI3 and McSPI4 Support up to Two Chip Selects
● Up to 48 MHz
● One Quad-SPI
● Supports eXecute In Place (XIP) from Serial NOR FLASH
● One Dallas 1-Wire® and HDQ Serial Interface
● Up to Three MMC, SD, and SDIO Ports
● 1-, 4-, and 8-Bit MMC, SD, and SDIO Modes
● 1.8- or 3.3-V Operation on All Ports
● Up to 48-MHz Clock
● Supports Card Detect and Write Protect
● Complies With MMC4.3 and SD and SDIO 2.0 Specifications
● Up to Three I2C Master and Slave Interfaces
● Standard Mode (up to 100 kHz)
● Fast Mode (up to 400 kHz)
● Up to Six Banks of General-Purpose I/O (GPIO)
● 32 GPIOs per Bank (Multiplexed With Other Functional Pins)
● GPIOs Can be Used as Interrupt Inputs (up to Two Interrupt Inputs per Bank)
● Up to Three External DMA Event Inputs That Can Also be Used as Interrupt Inputs
● Twelve 32-Bit General-Purpose Timers
● DMTIMER1 is a 1-ms Timer Used for Operating System (OS) Ticks
● DMTIMER4–DMTIMER7 are Pinned Out
● One Public Watchdog Timer
● One Free-Running, High-Resolution 32-kHz Counter (synctimer32K)
● One Secure Watchdog Timer (Avaliable Only on AM437xHS Devices)
● SGX530 3D Graphics Engine
● Tile-Based Architecture Delivering up to 20M Poly/sec
● Universal Scalable Shader Engine is a Multithreaded Engine Incorporating Pixel and Vertex Shader Functionality
● Advanced Shader Feature Set in Excess of Microsoft VS3.0, PS3.0, and OGL2.0
● Industry Standard API Support of Direct3D Mobile, OGL-ES 1.1 and 2.0, and OpenVG 1.0
● Fine-Grained Task Switching, Load Balancing, and Power Management
● Advanced Geometry DMA-Driven Operation for Minimum CPU Interaction
● Programmable High-Quality Image Anti-Aliasing
● Fully Virtualized Memory Addressing for OS Operation in a Unified Memory Architecture
● Display Subsystem
● Display Modes
● Programmable Pixel Memory Formats (Palletized: 1-, 2-, 4-, and 8-Bits Per Pixel; RGB 16- and 24-Bits Per Pixel; and YUV 4:2:2)
● 256- × 24-Bit Entries Palette in RGB
● Up to 2048 × 2048 Resolution
● Display Support
● Four Types of Displays Are Supported: Passive and Active Colors; Passive and Active Monochromes
● 4- and 8-Bit Monochrome Passive Panel Interface Support (15 Grayscale Levels Supported Using Dithering Block)
● RGB 8-Bit Color Passive Panel Interface Support (3,375 Colors Supported for Color Panel Using Dithering Block)
● RGB 12-, 16-, 18-, and 24-Bit Active Panel Interface Support (Replicated or Dithered Encoded Pixel Values)
● Remote Frame Buffer (Embedded in the LCD Panel) Support Through the RFBI Module
● Partial Refresh of the Remote Frame Buffer Through the RFBI Module
● Partial Display
● Multiple Cycles Output Format on 8-, 9-, 12-, and 16-Bit Interface (TDM)
● Signal Processing
● Overlay and Windowing Support for One Graphics Layer (RGB or CLUT) and Two Video Layers (YUV 4:2:2, RGB16, and RGB24)
● RGB 24-Bit Support on the Display Interface, Optionally Dithered to RGB 18-Bit Pixel Output Plus 6-Bit Frame Rate Control (Spatial and Temporal)
● Transparency Color Key (Source and Destination)
● Synchronized Buffer Update
● Gamma Curve Support
● Multiple-Buffer Support
● Cropping Support
● Color Phase Rotation
● Two 12-Bit SAR ADCs (ADC0, ADC1)
● 867K Samples Per Second
● Input Can Be Selected from Any of the Eight Analog Inputs Multiplexed Through an 8:1 Analog Switch
● ADC0 Can Be Configured to Operate as a 4- , 5-, or 8-Wire Resistive Touch Screen Controller (TSC)
● Up to Three 32-Bit eCAP Modules
● Configurable as Three Capture Inputs or Three Auxiliary PWM Outputs
● Up to Six Enhanced eHRPWM Modules
● Dedicated 16-Bit Time-Base Counter With Time and Frequency Controls
● Configurable as Six Single-Ended, Six Dual-Edge Symmetric, or Three Dual-Edge Asymmetric Outputs
● Up to Three 32-Bit eQEP Modules
● Device Identification
● Factory Programmable Electrical Fuse Farm (FuseFarm)
● Production ID
● Device Part Number (Unique JTAG ID)
● Device Revision (Readable by Host ARM)
● Security Keys (Avaliable Only on AM437xHS Devices)
● Feature Identification
● Debug Interface Support
● JTAG and cJTAG for ARM (Cortex-A9 and PRCM) and PRU-ICSS Debug
● Supports Real-Time Trace Pins (for Cortex-A9)
● 64-KB Embedded Trace Buffer (ETB)
● Supports Device Boundary Scan
● Supports IEEE 1500
● DMA
● On-Chip Enhanced DMA Controller (EDMA) Has Three Third-Party Transfer Controllers (TPTCs) and One Third-Party Channel Controller (TPCC), Which Supports up to 64 Programmable Logical Channels and Eight QDMA Channels
● EDMA is Used for:
● Transfers to and from On-Chip Memories
● Transfers to and from External Storage (EMIF, GPMC, and Slave Peripherals)
● InterProcessor Communication (IPC)
● Integrates Hardware-Based Mailbox for IPC and Spinlock for Process Synchronization Between the Cortex-A9, PRCM, and PRU-ICSS
● Boot Modes
● Boot Mode is Selected Through Boot Configuration Pins Latched on the Rising Edge of the PWRONRSTn Reset Input Pin
● Camera
● Dual Port 8- and 10-Bit BT656 Interface
● Dual Port 8- and 10-Bit Including External Syncs
● Single Port 12-Bit
● YUV422/RGB422 and BT656 Input Format
● RAW Format
● Pixel Clock Rate up to 75 MHz
● Package
● 491-Pin BGA Package (17-mm × 17-mm) (ZDN Suffix), 0.65-mm Ball Pitch With Via Channel Array Technology to Enable Low-Cost Routing
show more
Part Datasheet PDF Search
Example: STM32F103
72,405,303 Parts Datasheet PDF, Update more than 5,000 PDF files ervery day.