Part Datasheet Search > TI > TMS320C6412 Datasheet PDF
TMS320C6412 Datasheet PDF
ADatasheet has not yet included the datasheet for TMS320C6412
If necessary, please send a supplementary document request to the administrator
TMS320C6412 Datasheet PDF (163 Pages)
View Datasheet
Click page to view the detail
TMS320C6412 Environmental
TMS320C6412 Function Overview
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform.
●With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices.
●The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals.
●The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see the _TMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide_ (literature number SPRU628).
●The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see the _TMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide_ (literature number SPRU628).
●The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
●The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
● High-Performance Digital Media Processor (TMS320C6412)
● 2-, 1.67-, 1.39-ns Instruction Cycle Time
● 500-, 600-, 720-MHz Clock Rate
● Eight 32-Bit Instructions/Cycle
● 4000, 4800, 5760 MIPS
● Fully Software-Compatible With C64x™
● VelociTI.2™ Extensions to VelociTI™ Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x™ DSP Core
● Eight Highly Independent Functional Units With VelociTI.2™ Extensions:
● Six ALUs (32-/40-Bit), Each Supports Single 32-Bit, Dual 16-Bit, or Quad 8-Bit Arithmetic per Clock Cycle
● Two Multipliers Support Four 16 x 16-Bit Multiplies (32-Bit Results) per Clock Cycle or Eight 8 x 8-Bit Multiplies (16-Bit Results) per Clock Cycle
● Load-Store Architecture With Non-Aligned Support
● 64 32-Bit General-Purpose Registers
● Instruction Packing Reduces Code Size
● All Instructions Conditional
● Instruction Set Features
● Byte-Addressable (8-/16-/32-/64-Bit Data)
● 8-Bit Overflow Protection
● Bit-Field Extract, Set, Clear
● Normalization, Saturation, Bit-Counting
● VelociTI.2™ Increased Orthogonality
● L1/L2 Memory Architecture
● 128K-Bit (16K-Byte) L1P Program Cache (Direct Mapped)
● 128K-Bit (16K-Byte) L1D Data Cache (2-Way Set-Associative)
● 2M-Bit (256K-Byte) L2 Unified Mapped RAM/Cache (Flexible RAM/Cache Allocation)
● Endianess: Little Endian, Big Endian
● 64-Bit External Memory Interface (EMIF)
● Glueless Interface to Asynchronous Memories (SRAM and EPROM) and Synchronous Memories (SDRAM, SBSRAM, ZBT SRAM, and FIFO)
● 1024M-Byte Total Addressable External Memory Space
● Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent Channels)
● 10/100 Mb/s Ethernet MAC (EMAC)
● IEEE 802.3 Compliant
● Media Independent Interface (MII)
● 8 Independent Transmit (TX) and 1 Receive (RX) Channel
● Management Data Input/Output (MDIO)
● Host-Port Interface (HPI) [32-/16-Bit]
● 32-Bit/66-MHz, 3.3-V Peripheral Component Interconnect (PCI) Master/Slave Interface Conforms to PCI Specification 2.2
● Inter-Integrated Circuit (I2C) Bus
● Two Multichannel Buffered Serial Ports
● Three 32-Bit General-Purpose Timers
● Sixteen General-Purpose I/O (GPIO) Pins
● Flexible PLL Clock Generator
● IEEE-1149.1 (JTAG†) Boundary-Scan-Compatible
● 548-Pin Ball Grid Array (BGA) Package (GDK and ZDK Suffixes), 0.8-mm Ball Pitch
● 548-Pin Ball Grid Array (BGA) Package (GNZ and ZNZ Suffixes), 1.0-mm Ball Pitch
● 0.13-µm/6-Level Cu Metal Process (CMOS)
● 3.3-V I/Os, 1.2-V Internal (-500)
● 3.3-V I/Os, 1.4-V Internal (A-500, -600, -720)
●C64x, VelociTI.2, VelociTI, and TMS320C64x are trademarks of Texas Instruments.
●All trademarks are the property of their respective owners.
●†IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
●TMS320C6000, and C6000 are trademarks of Texas Instruments.
●Windows is a registered trademark of the Microsoft Corporation.
show more
TMS320C6412 Documents
TMS320 Documents
TI
Digital Signal Processing (DSP) Fixed-Point 16Bit 40MHz 40MIPS 100Pin LQFP
TI
Digital Signal Processing (DSP) Fixed-Point 32Bit 100MHz 100MIPS 100Pin LQFP
Part Datasheet PDF Search
Example: STM32F103
72,405,303 Parts Datasheet PDF, Update more than 5,000 PDF files ervery day.